
Automating Vertical Profiling

Matthias Hauswirth
University of Colorado at Boulder

Matthias.Hauswirth@colorado.edu

Amer Diwan‡

University of Colorado at Boulder

diwan@cs.colorado.edu

Peter F. Sweeney§

IBM Thomas J. Watson Research Center

pfs@us.ibm.com

Michael C. Mozer
University of Colorado at Boulder

mozer@cs.colorado.edu

ABSTRACT
Last year at OOPSLA we presented a methodology, verti-
cal profiling, for understanding the performance of object-
oriented programs. The key insight behind this methodology
is that modern programs run on top of many layers (virtual
machine, middleware, etc) and thus we need to collect and
combine information from all layers in order to understand
system performance. Although our methodology was able
to explain previously unexplained performance phenomena,
it was extremely labor intensive. In this paper we describe
and evaluate techniques for automating two significant ac-
tivities of vertical profiling: trace alignment and correlation.
Trace alignment aligns traces obtained from separate runs
so that one can reason across the traces. We are not aware of
any prior approach that effectively and automatically aligns
traces. Correlation sifts through hundreds of metrics to find
ones that have a bearing on a performance anomaly of inter-
est. In prior work we found that statistical correlation was
only sometimes effective. We have identified highly-effective
approaches for both activities.

For aligning traces we explore dynamic time warping, and
for correlation we explore eight correlators: Pearson’s coef-
ficient, Spearman’s coefficient, Manhattan distance, Euclid-
ean distance, dynamic time warping, manual linear pattern,
best splits, and same splits. Although we explore these ac-
tivities in the context of vertical profiling, both activities are
widely applicable in the performance analysis area.

‡This work is supported by NSF ITR grant CCR-0085792,
NSF Career CCR-0133457, and an IBM faculty partnership
award. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the authors’ and
do not necessarily reflect those of the sponsors.
§This work is supported by Defense Advanced Research
Project Agency Contract NBCH30390004.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’05,October 16-20, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-031-0/05/0010 ...$5.00.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analy-
sis and Design Aids; C.4 [Computer Systems Organiza-
tion]: Performance of Systems—measurement techniques,
performance attributes

General Terms
measurement, performance, experimentation

Keywords
vertical profiling, whole-system analysis, perturbation, hard-
ware performance monitors, software performance monitors

1. INTRODUCTION
Although object-oriented technologies have many software

engineering benefits, they have a significant cost in perfor-
mance. Nonetheless, object-oriented technologies are now
widely accepted, partly because rapid increases in proces-
sor performance – as predicted by Moore’s law – have offset
their performance costs. However, for various reasons in-
cluding power dissipation and wire delays, many computer
architects believe that Moore’s law, which predicts that com-
puting power will double every 18 months, will cease to hold
sometime in the near future. Thus, to get the needed per-
formance for new object-oriented technologies, such as web
services, we need to look at alternatives to rapid increases
in hardware performance. One possibility is to use perfor-
mance analysis and tuning techniques to better exploit the
hardware. This approach has great potential because most
applications realize only a fraction of the full potential from
modern hardware.

Last year at OOPSLA, we presented a methodology, verti-
cal profiling, to analyzing the performance of object-oriented
applications [10]. This analysis is a prerequisite for perfor-
mance tuning. Vertical profiling works by collecting per-
formance and behavioral data from all components of the
system (e.g., application, Java virtual machine, and hard-
ware) and then uses statistical and visualization techniques
to understand how the components interact in order to effect
overall system performance. We applied the vertical profil-
ing methodology to five case studies. In each case study
we used the methodology to explain performance anomalies
in one or more Java application. We define a performance
anomaly as any aspect of an application’s performance that
is unusual, unexpected, or undesirable. We had been unable

1

to explain these anomalies using conventional profiling tools
and techniques1. Although our evaluation showed that ver-
tical profiling was effective, it was extremely labor intensive.
Each case study took us weeks of investigation to complete.
With the increasing complexity of both software and hard-
ware, the difficulty of understanding the performance of ap-
plications will only grow over time. To enable performance
analysis and tuning to scale to newer systems we must au-
tomate much of vertical profiling. This paper shows how to
automate significant activities of vertical profiling.

There are four main activities in vertical profiling:

• Identification of anomalies. In this activity the perfor-
mance analyst picks an anomaly to explore in a target
metric. For example, the performance analyst may
wish to explore why the instructions-per-cycle (target
metric) is so low during some periods in program exe-
cution.

• Trace alignment. The performance metrics are spread
out over multiple trace files, with each file having only
some metrics. Although all trace files come from ex-
ecutions using the same application inputs, each exe-
cution collects a different set of metrics. That along
with nondeterminism in the underlying system means
that the same event in different trace files may not
line up perfectly (i.e., may happen at different times
relative to the program start time). Before we can
meaningfully analyze the relationship between differ-
ent metrics, we must align the traces in which they
occur.

• Correlation. For each of our modestly-sized case stud-
ies, we had over 300 performance metrics from which
we needed to identify ones that had a bearing on the
performance anomaly of interest. This task is complex
because the relevant metrics may have vastly differing
frequencies than the target metric, may be involved in
nonlinear relationships with the target metric, or there
may be significant noise in the data. In our past work
we used statistical correlation techniques to automate
this step; however, those techniques did not always
work due to the complexities described above.

• Determination of causality : In this activity the perfor-
mance analyst applies domain knowledge to the corre-
lated metrics to determine the chain of causality that
explains the performance anomaly.

Of the above activities, the second and third are the most
labor intensive, requiring us to manually align and correlate
hundreds of metrics per benchmark spread out over tens of
traces. The fourth activity, determination of causality, is
also a hard problem but its difficulty has more to do with
the needed domain knowledge rather than intense manual la-
bor. For the first activity, providing a GUI for browsing and
selecting metrics was enough for our needs: performance an-
alysts could efficiently and quickly spot anomalies that they
wanted to explore. Thus, in this paper we focus on automat-
ing the “trace alignment” and “correlation” activities.

We describe and evaluate one technique from the speech
recognition literature for automatic trace alignment: dy-
namic time warping (DTW). To evaluate automated trace
1Our earlier attempt to explain these anomalies using only
hardware performance monitor information failed [21].

alignment, we use a graphical user interface to visually check
if the traces are aligned correctly. We find that for our needs
dynamic time warping works nearly perfectly. However, we
do identify two scenarios (which we exercised using synthetic
traces) where DTW fails; these insights are invaluable to
performance analysts who wish to use this trace alignment
technique.

We describe and evaluate eight correlators. Four of the
techniques are from the statistics literature: Pearson corre-
lation coefficient, Spearman correlation coefficient, Euclid-
ean distance, and Manhattan distance. Three of the tech-
niques are new uses or variations of techniques in prior work
from the speech recognition and data mining literatures: dy-
namic time warping, same splits, and best splits. Finally,
we describe a novel technique: manual linear pattern. We
evaluate these techniques based on how effective they are at
identifying the metrics that the performance analyst should
look at. Of the techniques described in prior work, no obvi-
ous technique is the winner: some work better for correlating
continuous signals although others are better for discontin-
uous signals. Our novel technique, manual linear pattern,
which is based on Pearson’s correlation coefficient, performs
the best or very close to the best consistently.

The remainder of the paper is organized as follows. Sec-
tion 3 presents how we use dynamic time warping to perform
trace alignment. Section 4 presents our evaluation of trace
alignment. Section 5 presents the correlators. Section 6
presents our evaluation of the correlators. Section 7 reviews
related work. Section 8 presents our conclusions.

2. BACKGROUND
In our previous work [10], we analyzed five performance

anomalies in a set of nine benchmarks. The benchmarks con-
sisted of the seven SPECjvm98 applications, SPECjbb2000,
and hsql. In this paper, we use four of those performance
anomalies as a basis for evaluating our correlators. The four
performance anomalies are:

• Gradual increase

– Performance anomaly : Over time, the instruc-
tions per cycles (IPC) gradually increases

– Benchmarks: mpegaudio, mtrt, jbb, and hsql

– Explanation: Over time more and more of the
code gets optimized. Optimized methods use reg-
isters instead of an evaluation stack and thus suf-
fer fewer misspeculations (i.e., flushes in the load/-
store unit) resulting in better performance.

• Sudden increase

– Performance anomaly : Sudden increase in IPC

– Benchmark : compress

– Explanation: Similar to gradual increase except
that compress spends most of its time in two
methods (compress and decompress) and there is
a big jump in performance once these methods
are optimized.

• Periodic

– Performance anomaly : repeated periodic sine pat-
tern in IPC

2

– Benchmark : db

– Explanation: db executes a number of shell sorts
over its database. At the beginning of the sort,
the working set fits in the L2 cache and the al-
gorithm touches each entry more and more times
(thus resulting in better temporal locality) as the
sort progresses. When the working set ceases to
fit in the L2 cache the performance degrades.

• Pre-GC dip

– Performance anomaly : IPC suddenly dips before
a garbage collection (GC)

– Benchmarks: jbb, hsql

– Explanation: The GC expands and shrinks the
heap as needed (using mmap and munmap)2 . An
application uses the existing heap before grow-
ing into the expansion area. The first accesses to
the expansion area cause a series of page misses
that degrades performance. Because the expan-
sion area is used just before the program runs out
of memory and triggers a GC, the dips happen
right before a GC.

In our previous work, while determining the causes for
performance anomalies, we were surprised to find that we
needed to look at a diverse range of metrics, some of which
we would never have thought to look at. For example, in
the pre-GC dip performance anomaly, a key metric was ex-
ceptions disabled, an operating system metric that provided
insight into page fault behavior; in the gradual and sudden
increase performance anomalies, a key metric was the num-
ber of flushes in the load store unit, a functional unit of the
microarchitecture; and in the periodic performance anomaly,
a key metric was the set size of the shell sort, an application
metric. This diversity of the key metrics underscores the
importance of exploring every metric in every component
when trying to understand a performance anomaly. Fur-
thermore, our previous experience demonstrates that while
visual correlation identifies the key metrics it is extremely
labor intensive since we need to examine hundreds of met-
rics. Thus, it is worthwhile to automate correlation.

3. TRACE ALIGNMENT
This section discusses trace alignment, an essential step in

automating vertical profiling. We first describe the nature of
the problem that trace alignment solves, then describe our
approach for aligning traces, and finally discuss how we use
trace alignment to reason about metrics collected in different
traces.

3.1 Problem Description
For each of our case studies we collected hundreds of

metrics using hardware and software performance monitors.
Many application runs had to be made to collect these met-
rics. Consequently, the metrics are spread out over many
trace files3. There are two reasons why we cannot collect all
the metrics in a single run: (i) The software metrics require

2We never saw the GC shrink the heap in any of our bench-
mark executions.
3In our experiments, we needed to have 50 or so trace files
per application.

us to instrument code at all levels of the system. We found
that for any single metric the instrumentation did not sig-
nificantly perturb program execution. However, if we collect
all the metrics in a single run it substantially perturbs the
run. Thus, to minimize perturbation, we spread out the col-
lection responsibility over a number of runs, with each run
collecting only a small subset of the software metrics. (ii)
While modern microprocessors can measure over a hundred
metrics using their hardware performance monitors, in any
given run they can collect only a handful of the possible met-
rics. This is because the number of hardware performance
registers is smaller than the number of metrics that one can
collect using these registers.4 For example, the PowerPC
POWER4 microprocessor can use its hardware performance
monitors to measure over a hundred metrics but has only
eight hardware performance registers. Thus, to collect all
the hardware metrics, we need tens of runs.

Having the metrics spread out over multiple trace files is
problematic for any performance analysis system because it
must first align the traces before it can reason about them.
For example, one trace may contain the L1CacheMisses met-
ric and another may contain the StallCycles metric. To de-
termine if fluctuations in StallCycles are caused by fluctu-
ations in L1CacheMisses, we must align the traces to see if
the two fluctuations in the two metrics line up appropriately.

Unfortunately, trace alignment is a non-trivial problem
for two reasons. First, many aspects of modern systems are
nondeterministic (e.g. scheduling in the operating system
as affected by external interrupts). Thus, even two runs
collecting the same metrics and using the same inputs gen-
erate unaligned traces. Second, each run measures different
metrics which means that each run is perturbed slightly dif-
ferently than other runs. Figure 1 illustrates the need for
trace alignment. Each signal is from a different trace of an
execution of the db benchmark with the same set of inputs.
The signal shows the IPC (instructions-per-cycle) metric.
(The highlighted regions will be discussed in Section 3.3.)
Each trace collects a different set of metrics, along with the
IPC. The blank intervals in the signals represent garbage
collections (we filtered out the garbage collector events from
these signals). The traces clearly need alignment; for exam-
ple garbage collections occur at different times (relative to
the start of execution) for the different runs.

To better understand the alignment issues, Table 1 iden-
tifies four situations that an alignment technique must deal
with. The “Conceptual example” column shows pairs of
traces that suffer from the situation in Column “Situation”.
The “Real Example” column gives an example (excluding
the fourth, which is discussed below) of the situation from
our case studies.

The four situations in Table 1 are as follows. First, one
of the runs may appear to be slower than the other run
(scaled). Second, one of the runs may be shifted with respect
to the other run. Third, one of the runs may appear warped
with respect to the other. “Scaled” is really a special case of
“warped” where the warping factor is constant throughout
the run. Fourth, the events (e.g., garbage collection and
compilation) in one run may be reordered with respect to
the other run.

The situations in Table 1 are caused by factors such as
variations in

4To the best of our knowledge, this is true for every modern
microprocessor.

3

Situation Conceptual Example Real Example

Scaled

Shifted

Warped

Reordered unlikely for a deterministic thread

Table 1: Situations when Aligning Traces

4

Figure 1: Alignment of Selection Across the Prefixes of Different Traces

• operating system activity;

• workload on computer (e.g., other running processes);

• instrumentation, because the two traces are instru-
mented to collect different sets of metrics;

• virtual machine behavior (e.g., the order, time, and op-
timization level that different methods get optimized);

• hardware performance (e.g., machine enters a different
thermal mode when it becomes hot).

In Table 1, we do not have a real example for the fourth
reordered situation, because we did not encounter it in prac-
tice. For events to be reordered, there has to be nondeter-
minism. However, we are primarily interested in only the
parts of a metric that apply to a particular Java thread,
and for the most part, these threads are deterministic.

3.2 Our Approach
We use a technique from the speech recognition literature,

dynamic time warping (DTW) [4], to align the traces. Given
two sequences, X and Y , of lengths |X| and |Y |,

X =
�
x1, x2, . . . , xi, . . . , x|X|

�
Y =

�
y1, y2, . . . , yj , . . . , y|Y |

�
dynamic time warping constructs a warp path W (w1, w2,
· · · , w|W |) such that each wk is a pair (i, j), where i is an
index into X and j is an index into Y . The warp path
satisfies the following constraints:

1. For every element xi of X, there is at least one wi,∗
and for every element yj of Y , there is at least one
w∗,j , i.e., no element of X or Y is omitted

2. w1 = (1, 1) and w|W | = (|X|, |Y |), i.e., the end points
of the two sequences are aligned;

3. wk / wk+1, where (i1, j1) / (i2, j2) if (i1 = i2 or i1 +
1 = i2) and (j1 = j2 or j1 + 1 = j2) and (i1, j1) 6=
(i2, j2), i.e., the warp path respects the order of both
sequences.

DTW uses a dynamic programming algorithm to con-
struct the warp path. The algorithm minimizes the DTWEr-
ror :

5

DTWError =

|W |X
k=1

|xi − yj | where wk = (i, j) (1)

Figure 2 shows an example of a warp path. The samples
of the X sequence are the columns of the matrix and the
samples of the Y sequence are the rows. The shaded squares
represent the warp path. More specifically, if cell (i, j) is
shaded it means that there is a k for which wk = (i, j).
Figure 3 shows the alignment implied by the warp path in
Figure 2. If (i, j) is on the warp path, then xi is aligned to
yj . The lines that go between the two sequences in Figure 3
represent the alignment. If the two sequences are identical
(and thus do not need any alignment), all these lines would
be vertical. Note that there are situations where a single
element of X aligns with multiple elements of Y and also
where a single element of Y aligns with multiple elements
of X. In Figure 2, such many-to-one situations appear as
vertical or horizontal sequence of gray squares. For example
in Figure 3, the four circled X events are mapped to one
circled Y event and this is represented in warped path as a
horizontal sequence of four gray squares.

In addition to the warp path, the DTW also produces
another useful piece of information: the DTWError (Equa-
tion 1). This metric effectively gives the degree of similarity
between the two traces being aligned and thus can also be
used as a correlator (Section 5). As a matter of fact, prior
work has used DTW primarily to compute the DTWError ;
using DTW to align traces is a new use of DTW introduced
in this paper.

Finally, the DTW algorithm addresses the first three is-
sues in Table 1; however, it cannot handle “reordered” be-
cause of the constraint that wk / wk+1. Fortunately, we
have not encountered this situation in practice.

3.3 Discussion
Trace alignment enables us to reason across metrics in

different traces. If we want to determine the correlation of
two metrics in the same trace, we can apply the correlation
mechanism (Section 5) right away. However, if we want to
determine the correlation of two metrics in different traces,
we first align the two traces and then we use the correlation
mechanism. To align two traces, we require that the two
traces have at least one metric in common (common metric).
We use the common metric to effect the alignment and then
use the correlation mechanism on the aligned traces. In our
experiments, all traces have IPC (instructions-per-cycle) as
the common metric.

Figure 1 shows an example of DTW in practice. Each sig-
nal represents the IPC (instructions-per-cycle) metric col-
lected in a separate traces of the db benchmark. Each trace
collects a different set of metrics. The shaded regions rep-
resent how an interval in the first metric is aligned with
intervals in the other metrics. We clearly see that the traces
need alignment; for example the shaded regions occur at
different times (relative to the start of execution) for the
different runs.

4. EVALUATION OF TRACE ALIGNMENT
We now describe the methodology for evaluating DTW

for trace alignment (Section 4.1) and evaluate DTW based
on our needs (Section 4.2).

4.1 Methodology
To begin using our system, the performance analyst se-

lects an area in a metric (corresponding to an anomaly) in a
trace that she wants to explore further. We use trace align-
ment to select the corresponding intervals in all the other
traces. We require that the analyst-selected metric occurs
in all the traces; thus we use DTW to align different subse-
quences of the same metric.

We evaluate trace alignment in two ways: global and local
correctness. “Global correctness” determines the extent to
which DTW selects the same event in all the traces. “Local
correctness” determines the extent to which DTW selects
the same boundaries that a human would have picked. For
example, if the trace analyst selects the second period (see
“Periodic pattern” in Section 2) in the IPC sequence, it
would be globally correct to select the second period in the
IPC sequence in all the traces. Moreover, it would be lo-
cally correct if the boundaries (i.e., start and end points) of
that period, as computed by DTW for all traces, match the
boundaries we would have selected manually.

4.2 Evaluation
In our experience DTW was almost always globally and

locally correct. The only exception we encountered was in
the hsql benchmark when we were investigating the pre-
GC dip (Section 2) (Section 4.2.2 describes this problem).
Because DTW worked so well for our needs, we did not
investigate alternate approaches for aligning traces. That
said, using mostly synthetic traces, we were able to get DTW
to perform poorly; the remainder of this section discusses
these scenarios.

Both the scenarios, described in the following subsections,
occur because DTW can map a single point in one trace
to many points in the other traces. A consequence of this
is that a single point (which may be a measurement arti-
fact) can degrade the alignment if inappropriately situated.
While these scenarios were not common in our experiments
(we encountered only one instance of one of the scenarios)
we still include them since they provide valuable guidance
to others wishing to use DTW for trace alignment.

4.2.1 Local Correctness
Figure 4 illustrates a situation that causes DTW to be

locally incorrect. The figure shows two sequences to be
aligned. Broadly speaking, both sequences alternate be-
tween “high” and “low” values, staying at each value for
several samples. However, both sequences have “noisy” sam-
ples, at height h2 for the upper sequence and at height h3
for the lower sequence. Intuitively, we would expect each
sample in the upper trace to line up with the sample imme-
diately below it on the lower trace. However, instead, DTW
uses a many-to-one mapping since that is what minimizes
the DTWError (Section 3.2, Equation 1). This results in a
local inaccuracy since even though DTW selects the bound-
aries incorrectly the broad alignment is correct.

More generally, the above problem arises when trying to
align two sequences that are mostly constant. If the values
were constant in the two sequences, there would be no local
errors. However, small deviations from the constant values
lead to alignment errors.

While we can easily generate synthetic traces that exhibit
this problem, we have not yet encountered it in practice.
The reason for this is that so far we have focused on anom-

6

Figure 2: Dynamic Time Warping Warp Path

alies where behavior varies rather than remains constant.
One way to alleviate local incorrectness while trying to

align mostly constant sequences is to augment DTWError so
that it penalizes many-to-one and one-to-many associations.
We will investigate this in future work.

4.2.2 Global Correctness
Figure 5 illustrates a situation that causes DTW to be

globally incorrect. To improve readability of the figure, we
show only some lines between samples. As with the pre-
vious example, both sequences alternate between low (h1)
and high (h3) values. However, the upper sequence has a
single noisy point at h2. Since h2 is close to h3, DTW, aligns
it with the h3 points of the second period in the lower se-
quence. This is not what we would manually do: we would
consider points at h2 as if they were at h1 (effectively dis-
regarding deviations).

The consequence of this error is a global incorrectness:
DTW fails to associate the second period of the upper se-
quence with the second period of the lower sequence.

We encountered the above problem once when analyzing
the hsql benchmark. Fortunately, however, because the dif-
ferent pre-GC dips in hsql are nearly identical, it did not
affect the results of subsequent analyses (particularly corre-
lation).

The combination of constraints that DTW enforces (Sec-
tion 3.2) collectively ensure that global (and even local)
misalignments are uncommon. For example, consider two
sequences that align well (i.e., DTW introduces no global
or local alignment errors). Now let’s suppose we add noise
at one position in the first sequence. The only way that
this noise can cause a global misalignment is if there is a

later point in both sequences that allows the sequences to
synchronize again (recall that DTW always synchronizes the
end points of sequences and does not reorder points). If the
sequences are repetetive, i.e., the same pattern repeats itself
many times (e.g., hsql) then the repetetion of the sequences
may provide the synchronization point. If the sequences are
not repetetive, then a single noisy subsequence will most
likely not affect global alignment: we will need appropriate
“noise” later on in the single to enable the synchronization.

5. CORRELATORS
In our previous work [10], we used statistical correlation,

specifically Pearson’s coefficient, to identify metrics that
were likely to be relevant to the performance anomaly of
interest. Unfortunately, we found Pearson’s coefficient lack-
ing: for some of the case studies, it did not identify the key
metrics as being correlated with the target metric. Conse-
quently, we resorted to visual correlation. However, visual
correlation is extremely labor intensive and error prone: the
performance analyst must look at visualizations of hundreds
of metrics to determine which ones look correlated. Thus,
in this section we explore automated approaches to correla-
tion. In Section 6, we evaluate how well these approaches
work.

The correlators described here determine the strength of
the relationship between two sequences of values. In the
context of vertical profiling, these two sequences may be
two metrics (which are sequences of values) or they may
be subsequences of the metrics. The outcome of correlat-
ing two sequences is a number, the correlation score, which
determines the extent to which the two metrics are related.

7

Figure 3: Time Warping Between Two Sequences X and Y

h1
h2
h3

h1
h2
h3

Figure 4: Local Incorrectness

When presenting these results to the user, we sort and rank
the metrics in descending order using the correlation score;
the highest ranked metric will have the highest correlation
score and thus is most likely (according to the correlator) to
have a bearing on the anomaly of interest.

For example, suppose we wish to explore an anomaly in
the IPC (instructions-per-cycle) metric. A correlator may
report that L1CacheMisses has a correlation score of 0.9 with
IPC and the NumberOfSystemCalls has a correlation score
of 0.75. Thus L1CacheMisses will be ranked higher than
NumberOfSystemCalls, indicating that the performance an-
alyst should look at L1CacheMisses first when investigating
the anomaly.

The correlators consider both covariance and contravari-
ance. A sequence covaries with another sequence if both
vary in the same way (e.g., both increase and decrease at
the same time). A sequence contravaries with another se-
quence if they vary inversely (e.g., one decreases when the
other increases). Some of our correlators naturally consider
both covariance and contravariance, while for the others, we
correlate both a sequence and its negation to capture both
covariance and contravariance.

Table 2 classifies our correlators along three dimensions.
The mechanism dimension gives the underlying mechanism
that the correlator uses. The sensitivity dimension indicates
whether or not the correlator is time or order-sensitive. The
time-sensitive correlators require not only the sequence of
values but also the values’ start and end times. The order-
sensitive and order-insensitive correlators only require the
sequence of values. The scores of order-sensitive correlators
depend on the ordering of the values, i.e., they would not

produce the same result if the order in the two sequences
were changed. The scores of order-insensitive correlators do
not depend on the order of values; it treats the sequences
as multisets. Finally, the computation dimension specifies
whether the correlator is fully automatic or if it requires
some user input.

We now describe the different correlators in more detail.

5.1 Statistical Correlation
The correlators in this category come from the statistics

literature and are widely used.

5.1.1 Pearson’s Product Moment Correlation Coef-
ficient

The Pearson’s product moment coefficient, r, gives a mea-
sure of covariance or contravariance between two sequences.
If the sequences are covariant, r lies between 0 and 1. If
they are contravariant r lies between 0 and –1. Given two
sequences X and Y of length N, Pearson’s correlation coef-
ficient is defined as:

r =

P
i XiYi −

P
i Xi

P
i Yi

Ns�P
i X2

i − (
P

i Xi)
2

N

��P
i Y 2

i − (
P

i Yi)
2

N

� (2)

To obtain the correlation score we use the absolute value of
Pearson’s coefficient, |r|, because both contravariance and
covariance are equally indicative of a relationship between
the two sequences.

The strength of Pearson’s coefficient is that it is known to
work well for clean, continuous signals. However, it does not
perform well for noisy signals. In particular, outliers (called

8

h1

h2
h3

h1

h2
h3

Figure 5: Global Incorrectness

Correlators Mechanism Sensitivity Computation
Pearson correlation coefficient statistical correlation order-insensitive automatic
Spearman correlation coefficient statistical correlation order-insensitive automatic
Euclidean distance distance order-insensitive automatic
Manhattan distance distance order-insensitive automatic
Dynamic time warping distance distance order-sensitive automatic
Same splits segmentation time-sensitive semi-automatic
Best splits segmentation time-sensitive semi-automatic
Manual linear pattern segmentation time-sensitive semi-automatic

Table 2: Classification of Correlators

leverage points in the literature) can significantly perturb
the correlation.

5.1.2 Spearman’s Rank Correlation Coefficient
As noted above, Pearson’s coefficient is overly sensitive to

outliers. Spearman’s rank coefficient attempts to improve
on Pearson’s coefficient in this respect by using the ranks
of the values rather than the values themselves. The first
step in computing Spearman’s coefficient is to convert each
sequence of values into a sequence of ranks. For example
the sequence 〈10,15,9〉 becomes the rank sequence 〈2,3,1〉.
Equation 3 shows the formula for computing Spearman’s
coefficient (rs) from the rank sequences, Ẍ and Ÿ , derived
from the value sequences X and Y , respectively.

rs = 1 −
6
P

i

�
Ẍi − Ÿi

�2

N (N2 − 1)
(3)

As with the Pearson correlator, we use the absolute value
of the Spearman’s coefficient to get the correlation score.

A strength of Spearman’s coefficient is that it can corre-
late sequences that covary or contravary but are not nec-
essarily linearly related. This is because Spearman’s coeffi-
cient does not directly use the values of the two sequences
but instead uses their relative rank. For example, consider
two sequences 〈1,2,3,4,5,6〉 and 〈101,102,103,104,105,106〉.
These two sequences covary because when the first goes up
the second also goes up. However, the variations in the two
sequences are not linearly related. Thus Pearson’s coeffi-
cient is 0.7 while Spearman’s coefficient is 1.0 which more
closely matches our intuition.

Another advantage of Spearman’s coefficient over Pear-
son’s coefficient is that, as mentioned above, using the ranks
instead of the actual values enables Spearman’s coefficient

to gracefully handle some kinds of noise in the data. How-
ever, Spearman’s coefficient also has its weaknesses. For
example, consider the two sequences: 〈1000, 1002, 1003〉
and 〈1, 100, 1000〉. Because Spearman considers only the
rank and not the absolute values, the two sequences end up
looking the same (i.e., 〈1,2,3〉) even though the first may
be a constant sequence with some noise while the second is
an exponentially increasing sequence. Thus, a signal with
constant stretches that are slightly noisy can significantly
perturb the correlation.

5.2 Distance
The correlators in this section consider the distance be-

tween corresponding values of the sequences to determine co-
variance or contravariance. The first two correlators, which
are special cases of the Minkowski distance, are well known
and are order-insensitive. The third correlator, based on dy-
namic time warping, comes from speech recognition, and is
order-sensitive.

Because the values of different metrics can have vastly
different domains (metrics like IPC can have values around
1, while metrics like cache misses per cache reference can
have values around 0.02), it would not be meaningful to
compute the distance between the raw values of different
metrics. Thus, before using any of the distance correlators,
we first normalize all the values in a sequence such that
each normalized sequence has a mean of 0 and its standard
deviation is 1. We denote a normalized version of sequence
X as X̃. Note that the other correlators do not need any
such normalization.

A distance measure readily detects covariance between
metrics, not contravariance. Consequently, we compute both
the distance between the two sequences, Distance(X̃, Ỹ),
and the distance between the negation of one sequence and
the other sequence, Distance(−X̃, Ỹ). We use the inverse of

9

the smaller of these two measures as the correlation score.
We use the inverse because a smaller distance means higher
correlation. If the smaller of the two distances is zero, the
score is MAXINT.

5.2.1 Minkowski Distance
The Minkowski distance metric [3] evaluates differences

between corresponding pairs of points in the two sequences
X̃ and Ỹ :

d =

 X
i

���X̃i − Ỹi

���M
! 1

M

, (4)

where the exponent M is a free parameter that specifies
how much emphasis is to be placed on large differences, and
the metric is often referred to as the LM norm. A large M
amplifies large differences: the L∞ norm is a max opera-
tion that finds the largest difference among all pairs of the
points, whereas the L1 norm simply sums the absolute value
of differences, treating small and large differences evenly.

We use two common special cases of the Minkowski met-
ric, the L1 or Manhattan distance, dm:

dm =
X

i

���X̃i − Ỹi

��� (5)

and the L2 or Euclidean distance, de:

de =

sX
i

�
X̃i − Ỹi

�2

. (6)

The emphasis on larger differences makes the Euclidean
distance more stable than the Manhattan distance in the
presence of small amounts of noise. However, this greater
emphasis also makes the Euclidean distance more suscep-
tible than the Manhattan distance to perturbations from
outliers.

5.2.2 Dynamic Time Warping (DTW)
The dynamic time warping (DTW) uses the DTWError

(Equation 1 in Section 3.2) as the the distance between two
sequences. Recall that the correlation score is the inverse of
the distance.

DTW distinguishes itself from the other correlators in that
it does not assume that

• An event in one metric immediately causes a corre-
sponding event in the target metric. For example,
compared to other automatic correlators DTW would
consider the following two sequences to be highly cor-
related: 〈0,100,0,0〉 and 〈0,0,100,0〉.

• An event in one metric is of the same duration as
the corresponding event in the target metric. For ex-
ample, compared to the other automatic correlators,
DTW would consider the following two sequences to
be highly correlated: 〈0,100,0,0〉 and 〈0,100,100,0〉.

5.3 Segmentation Based
With the exception of Spearman’s coefficient, all of the

correlators presented so far can be perturbed significantly by
noise in the data. Spearman’s coefficient handles noise in the
data by abstracting away from the raw data by using ranks
instead. Another way of handling noise is to fit a polynomial
to the data and use that polynomial as an approximation

of the data. Noise is suppressed by using points on the
polynomial curve rather than the raw data points. It is
important to use a low-order polynomial otherwise we will
end up with a polynomial that fits not only trends in the
sequence, but also noise. In our work, we have focused on
first-order polynomials, i.e., lines.

Given a sequence of points yt = 〈y1 . . . yT 〉, where the
subscript is a time index, linear regression can be used to
determine the best-fit straight line, ŷ = at + b. This line,
referred to as the regression line, has a slope a and a y-
intercept b. Given a and b, ŷt is the approximation to yt.
Linear regression finds the values of a and b that minimizeP

t(yt − ŷt)
2.

Given the complexity of our data, a single line will gener-
ally fail to accurately characterize the metric. Thus, rather
than using linear regression directly as a correlator, we use
it as a component of piecewise linear segmentation. A piece-
wise linear segmentation of a sequence is defined as a se-
quence of line segments, each segment defined by a 4-tuple
〈sj , ej , aj , bj〉, where sj and ej are the start and end time
while aj is the slope and bj is the intercept of the jth line seg-
ment. Piecewise linear segmentation is a well-known tech-
nique and there are various approaches (e.g., [12]) to seg-
menting a signal.

We compute the piecewise linear segmentation of the sig-
nal with a greedy iterative top-down approach. At each it-
eration, piecewise linear segmentation picks a segment to
split and the point within the segment to use for the split.
While doing this, it attempts to minimize the overall error
of the new segmentation. Each split reduces the overall er-
ror. Once the algorithm has picked a split point, it does not
reconsider that decision (i.e., it is greedy). Piecewise linear
segmentation uses least squares linear regression, described
above, to compute the line segments at each iteration.

We now describe the two correlators that exploit this seg-
mentation. These correlators require the user to pick the
number of segments. In our system, users can visualize the
segmentation for each number of segments and pick the one
that looks best to them.

5.3.1 Same Splits
The same splits correlator segments one sequence using

the greedy top-down approach described above (sequence
T in Figure 6). It then segments and fits (using linear re-
gression) the second sequence forcing the second sequence
to have the same segment boundaries as the first sequence
(sequence M in Figure 6). Since we are using the segment
boundaries of T for M, we may or may not get a good fit.
We use the inverse of the error of the fit for M as the corre-
lation score. The error of the fit is the sum of the square of
the difference between the points on the line segments and
the corresponding points on the original sequence.

5.3.2 Best Splits
The best splits correlator segments each sequence indi-

vidually using the same number of segments but does not
enforce the same segment boundaries. For example in Fig-
ure 7 we have used the same number of segments (2) for
both T and M, but the segment boundaries for T and M are
different. We use the inverse of the cumulative difference
between the corresponding boundaries of the two sequences
(di) as the correlation score.

Both the same splits and best splits correlators reward

10

Figure 6: Illustration of Same Splits

Figure 7: Illustration of Best Splits

Figure 8: Illustration of Manual Linear Pattern
(MLP)

sequences that have the same natural segment boundaries.

5.3.3 Manual Linear Pattern (MLP)
Often times a performance analyst can immediately pick

out a pattern of interest and abstract the pattern away from
the noise in the data. The manual linear pattern (MLP)
correlator exploits the performance analyst’s intuition. The
performance analyst manually segments one of the sequences
(sequence T in Figure 8). From this point onwards, this
correlator behaves like Pearson’s r, but instead of using the
original T sequence, it uses the manual segmentation. Its
correlation score is the absolute value of Pearson’s r.

5.4 Discussion
The correlators enable the performance analyst to prior-

itize her efforts so that she looks at the most highly cor-
related (and thus most likely to be relevant) metrics first.
Correlation, however, does not imply causality: just because
a metric correlates well with the target metric it does not
mean that the metric causes the anomaly in the target met-
ric. To determine causality, the performance analyst needs
to bring domain knowledge to bear on the problem.

6. EVALUATION OF CORRELATORS
Section 6.1 presents the experimental methodology for

evaluating correlators. Section 6.2 evaluates the correlators.
Finally, Section 6.3 discusses our findings and suggested fu-
ture work.

6.1 Methodology
A given performance anomaly may occur many times in a

metric. For example, the periodic pattern repeats through-
out the execution of the db benchmark. In our prior work
[10], we used visual and statistical correlation over the entire
metric. However, this approach has three problems:

1. If the metric is long, it may take a long time to com-
pute the correlation score;

2. Some occurrences of the anomaly may be noisy while
others not. If we correlate over the entire metric, the
noise may degrade the effectiveness of the correlators.

3. A given metric may suffer from multiple performance
anomalies. Thus, some occurrences of an anomaly may

11

be superimposed with other anomalies. This, once
again, can degrade the effectiveness of the correlators.

Thus, in this work we correlate not just on the entire metric
but also on subsequences of a metric. We use trace align-
ment to align the user-selected pattern with corresponding
patterns in other traces. During correlation, we ignore all
parts of the trace that fall outside the pattern. Enabling the
performance analyst to pick subsequences allows the analyst
to focus on relatively noise-free and unperturbed instances
of an anomaly.

Table 3 illustrates the seven anomalies that we use in our
evaluation. We chose these anomalies from the performance
anomalies described in Section 2. Column “Complete IPC
metric with anomaly shaded” shows the entire sequence for
the IPC. The shaded area in the sequence identifies the
anomaly that we are interested in. Column “Name” names
the anomaly. For example the H PGD anomaly, contains an
instance of the pre-GC dip phenomenon in hsql. In the grad-
ual increase anomaly in jbb, J GI 2, the anomaly contains
two subsequences on which to perform correlation. Column
“Category” categorizes the anomalies. Continuous patterns
contain subsequences that change slowly over time. Discon-
tinuous patterns contain subsequences that change sharply.
Finally, distorted patterns contain subsequences that appear
to contain significant noise (this is a judgment call on our
part). The distorted category may include anomalies from
the continuous or discontinuous categories. Because we do
not have enough case studies (each case study takes weeks
to months to do) we decided to not split out the “distorted
anomalies” class into “distorted continuous anomalies” and
“distorted discontinuous anomalies”.

Because our goal is to remove the correlation responsibil-
ity from a human analyst, we evaluate our correlators with
respect to how they perform compared to a human expert.
Thus, to perform this evaluation, one of the authors manu-
ally labeled each metric with yes, maybe, or no, depending
on whether or not the pattern in the metric visually corre-
lates with the pattern in the target metric. We provided a
qualitative correlation score (yes, no, or maybe) rather than
a fine grained correlation score (e.g., L1CacheMiss has corre-
lation score of 0.95 and, L2CacheMiss has a correlation score
of 0.8, etc.) because it is very hard to objectively score sev-
eral hundred metrics manually. We use the qualitative score
to rank the metrics such that all “yes” metrics are ranked
higher than all “maybe” metrics, which in turn are ranked
higher than all “no” metrics. We compute Spearman’s co-
efficient on this ranking and with each correlator’s ranking.
Because the human did not fully rank the metrics, but just
labeled them with one of three labels, Spearman’s coefficient
can never reach its extreme values +1 or −1. Thus, we nor-
malized the output of Spearman’s so that if the automatic
correlation put all the “yes” before all the “maybe” and all
the “maybe” before all the “no” metrics, then we had a cor-
relation value of 1. If a correlator puts a “maybe” before
a “yes”, then its normalized Spearman coefficient is lower
than one. If a correlator puts a “no” before a “yes” then its
Spearman coefficient is lower than the correlator that puts
a “maybe” before a “yes”.

For the three correlators that require additional user in-
put we did the following. For the “Best Splits” and “Same
Splits” correlators, we picked the number of segments based
on what suited the target metric the best. This was easy
and quick with our GUI. For the MLP correlator we used

the first natural-looking manual segmentation that we came
up with (i.e., we did not try different segmentations to find
one that gave the best results).

6.2 Evaluation
We now evaluate the performance of the eight correlators

presented in Table 2 on the seven patterns presented in Ta-
ble 3. For each correlator, Figures 9 shows its accuracy as
compared to visual correlation presented in Section 6.1. We
group the patterns in the figure according to their “cate-
gory” (see Table 3). To improve readability, we start the
y-axis at 0.5 instead of 0.

6.2.1 Overall Results
From Figures 9 we see that the MLP is either the best or

one of the best performing correlators for all the patterns.
Perhaps most important, there is no pattern where MLP
performs poorly. More specifically, the lowest MLP bar is
at 0.83, while all other correlators have a bar at or below
0.60.

6.2.2 Evaluation by Correlator
For four of the seven patterns (J GI 1, D SLP, C SI,

and D FLP), the two statistical correlators (Pearson’s co-
efficient and Spearman’s coefficient) perform similarly. Of
the remaining three patterns, Spearman does significantly
worse in two (J GI 2 and H PGD) and Pearson does signifi-
cantly worse in one (D D). Both correlators perform poorly
for the D D pattern. The fact that both correlators are be-
low 0.60 for some anomaly confirms our previous experience
that statistical correlation does not work as well as visual
correlation.

Even though MLP uses Pearson’s coefficient, it usually
significantly outperforms Pearson’s coefficient. The key ad-
vantage of MLP over Pearson’s coefficient is that MLP gets
assistance from the human in filtering out the noise in the
data (because the human performs the piecewise-linear seg-
mentation). Thus we conclude that Pearson’s coefficient is
significantly affected by noise in our data. Because Spear-
man’s coefficient does not outperform MLP, we conclude
that Spearman’s noise filtering is not sufficient for our needs.

Figure 9 illustrates that there is no clear winner between
the distance-based correlators: Euclidean, Manhattan and
DTW. All three distance-based correlators are always close
to each other and are usually comparable in performance
to one of the statistical correlators. The main exception to
this is the D D pattern where the distance-based correlators
are far worse than the statistical correlators. The Euclidean
distance performs worse than the Manhattan distance for D
D because the significant outliers in D D affect Euclidean
distance (with M = 2) more than Manhattan distance (with
M = 1). Also, while DTW has been used almost exclusively
for correlation in the past, it performs relatively poorly for
our needs.

Of the automatic segmentation-based correlators (same
splits and best splits), same splits beats best splits in six out
of the seven patterns, and for the pattern that best splits
wins (C SI) it is by a small margin. In contrast, in two of the
patterns (J GI 1 and J GI 2) best splits is over 30% worse
than same splits. On visually inspecting the segmentations,
we found that same splits actually does a good job of the
segmentation. However, it still performs much worse than
MLP. Therefore we conclude that using the linear regression

12

Complete IPC metric with anomaly shaded Name Category

Gradual increase anomaly in Jbb (complete metric) J GI 1 continuous

Gradual increase anomaly in Jbb J GI 2 continuous

Periodic anomaly in db (second to last instance) D SLP continuous

Sudden increase anomaly in compress C SI discontinuous

Pre-GC dip anomaly in hsql H PGD discontinuous

Periodic anomaly in db (first instance) D FLP distorted

Distortion anomaly in db D D distorted

Table 3: Performance Anomalies Used in our Study

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

J GI 1 J GI 2 D SLP C SI H PGD D FLP D D

N
or

m
al

iz
ed

 S
pe

ar
m

an
's

 c
oe

ffi
ci

en
t w

ith
 h

um
an

 ra
nk

in
g

Pearson
Spearman
Euclid
Manhattan
DTW
MLP
Best Splits
Same Splits

Figure 9: Correlator Accuracy: Compared to Visual Correlation

13

error to get the correlation score is inferior to using Pearson’s
coefficient (which is what MLP uses). We will explore the
reason behind this in future work.

6.2.3 Evaluation by Category
For the continuous patterns, which make up the first group

of bars, Figure 9 illustrates that five of the correlators achieve
at least 0.88 accuracy (Pearson coefficient, Euclid, Manhat-
tan, DTW, and MLP). For J GI 2, six of the eight corre-
lators get close to 1.0 (i.e., fully consistent with the human
correlation). Best splits does significantly worse than the
other correlators on all three patterns: never better than
70%. The reason for best split’s poor performance is that
in a continuous pattern it is harder to pick segment bound-
aries (because there are no abrupt changes that are obvious
for boundaries). Thus two patterns may end up with very
different “best” boundaries even though visually they are of
a nearly identical shape. Same split does better than best
split for the continuous metrics because it uses the same
boundaries for all the metrics.

For the discontinuous patterns, Figure 9 illustrates that
the overall correlator accuracy is worse than for the contin-
uous patterns, with the Pearson’s coefficient being closer 0.8
than to 0.9. That said, best splits performs the best for C
SI but poorly for H PGD. On the other hand, same splits
performs the best for H PGD and the worst for C SI ; there
is no clear winner between these two.

For the distorted patterns, we see that the manual linear
pattern (MLP) performs best by far, because this correlator
uses the performance analyst’s manually drawn line, which
does not contain any noise. No other correlator does well for
both of these patterns, although some do well with one. As
expected, Spearman’s coefficient does better than Pearson’s
coefficient for both patterns because using the rank of the
values helps to eliminate noise. Furthermore, because MLP
uses Pearson’s coefficient after manual piecewise-linear seg-
mentation and MLP does significantly better than Pearson’s
coefficient, we conclude that Pearson is affected to noise in
our data.

6.2.4 Subsequences Versus Complete Metrics
In prior work we had correlated on the entire metric. One

of the contributions of this work is that we propose corre-
lating on subsequences of the metric. Section 6.1 discusses
why we believe that correlating on subsequences is a better
idea than correlating on the entire sequence. In this section
we discuss whether or not we realized any of the benefits.

From Figure 9 we see that the bars for J GI 1 and J GI
2 differ slightly for the better performing correlators. The
difference between J GI 1 and J GI 2 is that the former
correlates on the entire metric, while the latter correlates on
two subsequences of the metric. Therefore, at least for these
two anomalies, selecting a set of subsequences in a metric
yields better results than selecting the complete metric. In
addition, the poor performance of most correlators on the D
D bars emphasizes that noise in the data can significantly
degrade their performance. Because our methodology does
not require correlation on the entire trace, it enables users
to correlate on cleaner subsequences of the trace and thus
obtain better results.

6.3 Discussion
Our evaluation validates our previous observations that

statistical correlation may be inaccurate with respect to vi-
sual correlation. Our new correlator, MLP, is better or al-
most as good as statistical correlation across the board. Our
evaluation also allowed us to better understand the strengths
and weaknesses of the different mechanisms.

Nevertheless, even our best correlator, MLP, is not per-
fect. In the worst case, its Spearman’s coefficient with hu-
man correlation is as low as 0.83. While 0.83 sounds high,
it may be that some of the metrics that MLP fails to find
as correlated are the key causal metrics for the performance
anomaly of interest. In future work we will investigate how
to combine multiple correlators in an attempt to achieve
better accuracy.

7. RELATED WORK
This section surveys work related to vertical profiling.

This includes work on performance studies of Java work-
loads, performance visualization and analysis tools, and time
series data mining.

7.1 Performance Studies of Java Workloads
Java middleware and server applications are an important

class of emerging workloads. Existing research uses simula-
tion and/or hardware performance counters to characterize
these workloads. Cain et al. [5] evaluate the performance
of a Java implementation of the TPC-W benchmark and
compare the results to SPECweb99 and specjbb. Shuf et
al. [20] analyze the memory performance of SPECjvm98 and
pBOB on an IBM PowerPC processor using simulation and
hardware performance counters. Luo and John [14] eval-
uate specjbb and VolanoMark on a Pentium III processor
using the Intel hardware performance counters. Seshadri,
John, and Mericas [19] use hardware performance counters
to characterize the performance of specjbb and VolanoMark
running on two PowerPC architectures. Karlsson et al. [11]
characterize the memory performance of Java server appli-
cations using real hardware and a simulator. They measure
the performance of specjbb and ECPerf on a 16-processor
Sun Enterprise 6000 server. Other studies focus on behav-
ior impacting specific subsystems, like Dieckmann et al. [7],
who investigate memory performance metrics of interest for
garbage collection designers. These studies generally focus
on the overall characteristics of the workloads. We are inter-
ested in the causes of temporal performance phenomena, we
present tools and techniques for correlating performance in-
formation, gathered in multiple runs of a benchmark, across
different levels of a system.

7.2 Performance Visualization and Analysis
Tools

A large body of work exists on performance visualization.
Kimelman et al. [13] introduce PV, a performance visual-
izer focused on presenting temporal information from vari-
ous levels of the system. PV shows only a subsection of the
whole trace, but it allows scrolling through the whole trace,
thereby continually updating the subsection currently visu-
alized. Mellor-Crummey et al. [15] present HPCView, a per-
formance visualization tool together with a toolkit to gather
hardware performance counter traces. They use sampling
to attribute performance events to instructions, and then
hierarchically aggregate the counts, following the loop nest-
ing structure of the program. Their focus is on attributing
performance counts to source code areas. Miller et al. [16]

14

present Paradyn, a performance measurement infrastructure
for parallel and distributed programs. Paradyn uses dy-
namic instrumentation to count events or to time fragments
of code. It can add or remove instrumentations on request,
reducing the profiling overhead. Metrics in Paradyn corre-
spond to everything that can be counted or timed through
instrumentations. The original Paradyn does not support
multithreading, but Xu et al. [23] introduce extensions to
Paradyn to support the instrumentation of multithreaded
applications. Zaki et al. [25] introduce an infrastructure to
gather traces of message-passing programs running on par-
allel distributed systems. They describe Jumpshot, a trace
visualization tool, which is capable of displaying traces of
programs running on a large number of processors for a
long time. They visualize different (possibly nested) pro-
gram states, and communication activity between processes
running on different nodes. The newer version by Wu et
al. [22] is also capable of correctly tracing multithreaded
programs. Pablo, introduced by Reed et al. [18], is another
performance analysis infrastructure focusing on parallel dis-
tributed systems. It supports interactive source code in-
strumentation, provides data reduction through adaptively
switching to aggregation when tracing becomes too expen-
sive, and introduces the idea of clustering for trace data
reduction. DeRose et al. [6] describe SvPablo (Source View
Pablo), loosely based on the Pablo infrastructure, which sup-
ports both interactive and automatic software instrumenta-
tion and hardware performance counters, to gather aggre-
gate performance data. They visualize this data for C and
Fortran programs by attributing the metric values to specific
source code lines.

To the best of our knowledge none of the above tools pro-
vides a mechanism to integrate information from multiple
runs of a benchmark, or support to for the identification of
causal relationships between performance metrics.

Recent work uses statistical techniques to analyze perfor-
mance counter data. Eeckhout et al. [8] analyze the hard-
ware performance of Java programs. They use principal
component analysis (PCA) to reduce the dimensionality of
the data from 34 performance counters to 4 principal com-
ponents. Then they use hierarchical clustering to group
workloads with similar behaviors. They gather only aggre-
gate performance counts, and they divide all performance
counter values by the number of clock cycles. Ahn and Vet-
ter [2] hand-instrument several code regions in a set of ap-
plications. They gather data from 23 performance counters
for three benchmarks on two different parallel machines with
16 and 68 nodes. Then they analyze that data using differ-
ent clustering algorithms and factor analysis, focusing on
parallelism and load balancing.

Even though the correlators in our vertical profiling ap-
proach are reducing the number of metrics that need to be
studied from a large number down to a few metrics, we do
not want to reduce the dimensionality of the captured data
per se (i.e. by reducing 300 metrics down to 5 principal
components). The correlators are intended to find the small
number of metrics that are potential causes of the pattern in
the target metric. PCA would reduce the number of metrics,
but it would do so by introducing new, derived metrics (the
principal components), which would be linear combinations
of many metrics.

7.3 Time Series Data Mining

The field of time series data mining provides many tech-
niques useful for the analysis of performance data traces,
since all temporal performance data can be considered a
time series.

Our approach for trace alignment is based on the dynamic
time warping (DTW) technique [17], first introduced into
the data mining community in 1994 [4]. The data mining
community primarily uses DTW for the comparison of two
time series, or two subintervals in a time series. This in-
terpretation of the DTW distance as a similarity measure
has been used for many data mining applications, such time
series database queries [24], but also for the alignment of
gene expression time series [1]. To the best of our knowl-
edge we are the first to use DTW for aligning performance
traces, and thus to enable the automatic performance analy-
sis across multiple complementary traces produced by non-
deterministic (real) systems.

Our segmentation based correlators were inspired by prior
work on piecewise linear segmentation [12, 9]. Unlike [9], our
goal is not to turn sequences of values into discrete events;
but the overall idea of identifying change points in time se-
ries is the same. We use these change points for the purpose
of determining the similarity between two time series (i.e.
with the same splits and best splits correlators).

8. CONCLUSIONS
While most modern processors are capable of executing

multiple instructions per cycle, most applications do not
even come close to utilizing this potential. For example,
the PowerPC POWER4 processor is capable of executing
five instructions per cycle; however, in our experience with
a number of standard Java applications, the average num-
ber of instructions completed per cycle is under 1.1 for all
the benchmarks. In other words, performance tuning tech-
niques have the potential for dramatically impacting perfor-
mance. However, before we can tune the performance of an
application we must first understand its behavior. Unfortu-
nately, even with sophisticated visualization and statistical
tools understanding the performance of modern applications
is very labor intensive [10]. This paper describes and evalu-
ates techniques for automating two labor intensive activities
of performance analysis: aligning of traces and correlation.

We evaluate one technique for aligning traces: dynamic
time warping (DTW) from the speech recognition litera-
ture. We show that for our experiments, DTW performs
extremely well. To increase the generality of our results, we
use not only traces from real benchmarks but also synthetic
traces to evaluate DTW. We evaluate eight techniques for
correlation. These techniques include techniques from prior
work (e.g., statistical correlation) and one new technique:
Manual Linear Pattern (MLP). We show that the techniques
from prior work are inconsistent: they work well for some
situations and not so well for others. Our MLP correlator is
the best or close to the best correlator in all our experiments.

9. REFERENCES
[1] John Aach and George Church. Aligning gene expression

time series with time warping algorithms. Bioinformatics,
Vol. 17:495–508, June 2001.

[2] Dong H. Ahn and Jeffrey S. Vetter. Scalable analysis
techniques for microprocessor performance counter metrics.
In Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, pages 1–16. IEEE Computer Society
Press, 2002.

15

[3] Bruce G. Batchelor. Pattern Recognition: Ideas in Practice.
Plenum Press, 1978.

[4] Donald J. Berndt and James Clifford. Using dynamic time
warping to find patterns in time series. In Working Notes
of the Knowledge Discovery in Databases Workshop, pages
359–370, July 1994.

[5] Harold W. Cain, Ravi Rajwar, Morris Marden, and
Mikko H. Lipasti. An architectural evaluation of Java
TPC-W. In Proceedings of the Seventh International
Symposium on High-Performance Computer Architecture,
pages 229–240, Nuevo Leone, Mexico, January 2001.

[6] Luiz DeRose and Daniel A. Reed. SvPablo: A
multi-language architecture-independent performance
analysis system. In Proceedings of the International
Conference on Parallel Processing, Fukushima, Japan,
September 1999.

[7] Sylvia Dieckmann and Urs Hölzle. A study of the allocation
behavior of the SPECjvm98 Java benchmarks. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). Springer Verlag, June 1999.

[8] Lieven Eeckhout, Andy Georges, and Koen De Bosschere.
How Java programs interact with virtual machines at the
microarchitectural level. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA), pages 169–186, 2003.

[9] Valery Guralnik and Jaideep Srivastava. Event detection
from time series data. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining,
pages 33–42, 1999.

[10] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and
Michael Hind. Vertical profiling: Understanding the
behavior of object-oriented applications. In Proceedings of
the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM Press, October 2004.

[11] Martin Karlsson, Kevin E. Moore, Erik Hagersten, and
David A. Wood. Memory system behavior of Java-based
middleware. In Proceedings of the Ninth International
Symposium on High Performance Computer Architecture,
pages 217–228, Anaheim, California, February 2003.

[12] Eamonn Keogh, Selina Chu, David Hart, and Michael
Pazzani. An online algorithm for segmenting time series. In
Proceedings of the International Conference on Data
Mining, pages 289–296, 2001.

[13] Doug Kimelman, Bryan Rosenburg, and Tova Roth.
Strata-various: Multi-layer visualization of dynamics in
software system behavior. In Proceedings of the conference
on Visualization (VIS’94), pages 172–178. IEEE Computer
Society Press, October 1994.

[14] Yue Luo and Lizy Kurian John. Workload characterization
of multithreaded Java servers. In Proceedings of the 2001
IEEE International Symposium on Performance Analysis
of Systems and Software, pages 128–136, Tucson, Arizona,
November 2001.

[15] John Mellor-Crummey, Robert Fowler, and Gabriel Marin.
HPCView: A tool for top-down analysis of node
performance. In Proceedings of the Los Alamos Computer
Science Institute Second Annual Symposium, Santa Fe,
New Mexico, October 2001.

[16] Barton P. Miller, Mark D. Callaghan, Joanthan M.
Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin, Karen L.
Karavanic, Krishna Kunchithapadam, and Tia Newhall.
The Paradyn parallel performance measurement tool. IEEE
Computer, 28(11):37–46, 1995.

[17] Chotirat Ann Ratanamahatana and Eamonn Keogh.
Everything you know about dynamic time warping is
wrong. In Third Workshop on Mining Temporal and
Sequential Data, August 2004.

[18] Daniel A. Reed, Ruth. A. Aydt, Roger J. Noe, Philip C.
Roth, Keith A. Shields, Bradley Schwartz, and Luis F.
Tavera. Scalable performance analysis: The Pablo

performance analysis environment. In Proceedings of the
Scalable Parallel Libraries Conference, October 1993.

[19] Pattabi Seshadri, Lizy John, and Alex Mericas. Workload
characterization of Java server applications on two
PowerPC processors. In Proceedings of the Third Annual
Austin Center for Advanced Studies Conference, Austin,
Texas, February 2002.

[20] Yefim Shuf, Mauricio J. Serrano, Manish Gupta, and
Jaswinder Pal Singh. Characterizing the memory behavior
of Java workloads: A structured view and opportunities for
optimizations. In Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, pages 194–205. ACM Press, 2001.

[21] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon,
Perry Cheng, Amer Diwan, David Grove, and Michael
Hind. Using hardware performance monitors to understand
the behavior of Java applications. In Proceedings of the 3rd
Virtual Machine Research and Technology Symposium
(VM’04), May 2004.

[22] C. Eric Wu, Anthony Bolmarcich, Marc Snir, David
Wootton, Farid Parpia, Anthony Chan, Ewing Lusk, and
William Gropp. From trace generation to visualization: A
performance framework for distributed parallel systems. In
Proc. of SC2000: High Performance Networking and
Computing, November 2000.

[23] Zhichen Xu, Barton P. Miller, and Oscar Naim. Dynamic
instrumentation of threaded applications. In Principles
Practice of Parallel Programming, pages 49–59, 1999.

[24] Byoung-Kee Yi, H. V. Jagadish, and Christos Faloutsos.
Efficient retrieval of similar time sequences under time
warping, February 1998.

[25] Omer Zaki, Ewing Lusk, William Gropp, and Deborah
Swider. Toward scalable performance visualization with
Jumpshot. High Performance Computing Applications,
13(2):277–288, Fall 1999.

16

